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i School of Chemical Engineering, Purdue University, West Lafayelte, I N  47907, USA 

Received 17 May 1991 

Abstract. We study the asymptotic kinetics o l t h e  random sequential adsorption (RSA) of 
a mixture of panicles with a continuow distribution of sizes. Our results provide further 
support for the idea that the power law exponent for the approach to the jamming limit 
is simply related to the number of degrees of freedom of the adsorbing species. We also 
predict the behaviour oi the mean radiai distribution iunction in the asymptotic regime. 

It is easy to understand why the random sequential adsorption (RSA) model has received 
much recent attention [I-111. Although the defining algorithm for this irreversible 
process (the sequential placement of objects a t  random on a surface without overlap 
or diffusion of the objects once placed) is simple, the resulting behaviour is complex. 
Simulation studies, particularly of non-spherical particles, require considerable compu- 
tational resources which were not available when the model was first proposed [12, 131. 
Moreover, apart from its intrinsic interest, RSA is thought to be applicable to a wide 
variety of physical, chemical and biological processes. A number of related models 
have also been studied recently [14-171. 

A unique and fascinating aspect of the RSA process, which has captured much of 
the research effort, is the asymptotic approach to the saturation coverage. It was first 
conjectured by Feder [18] and later proved by Swendsen [19] and Pomeau [20], that 
for spherical particles in d dimensions the density approaches its saturation value 
according to the power law 

Although Swendsen argued that the same law should apply quite generally to all objects 
[19], we recently presented numerical and theoretical arguments that indicate otherwise 
[3]. For weakly elongated ellipses the correct power law appears to be 

p ( m ) - p ( f ) - - l - P  (2) 
with p =f .  Other studies appear to confirm this result for weakly elongated ellipses [8] 
and rectangles [9], and a careful numerical study of unoriented squares unambiguously 
found p = f  [6 ] .  It is unclear how to extend the analytical argument to more elongated 
particles, since the target areas no longer have a simple geometry. Moreover, the 
numerical determination of the power law exponent is particularly difficult for highly 
elongated particles. It has been suggested that the exponent p is the inverse of the 
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number of degrees of freedom of the adsorbing species [6], so that p = f for any 
two-dimensional anisotropic body. However, this must remain a conjecture until more 
definitive simulation data become available. 

In this letter we present an analysis for the asymptotic kinetics of the RSA of a 
mixture of spherical particles with a continuous distribution of sizes. This extension 
of the RSA theory is not only of academic interest since in many of the physical 
applications the adsorbing particles are indeed polydisperse (e.g. the adsorption of 
latex spheres on silica). Previously, we studied a two-component mixture of hard disks 
of greatly differing diameter adsorbing on a planar surface [4]. While the large disks 
approach their saturation coverage exponentially, the smaller disks follow the usual 
power law, ( 1 )  ( d  = 2). However, the properties of a continuous mixture are quite 
different. For simplicity, we specialize our analysis to two dimensions, although it is 
easy to generalize the results to arbitrary dimension. At zero coverage, the adsorption 
probability per unit time for a disk of diameter U is K ( u ) ,  which we assume is 
continuous for uI S u s  U>,  and zero for U outside this range. In general, this is related 
to the bulk concentration c ( u )  by K ( u ) =  K,,(u)c(u), where &(U) depends on the 
details of the interaction between the surface and an isolated particle of diameter U. 
Here we consider only the case for which uI > 0. The onset of the asymptotic regime 
in a monocomponent system (i.e. K (U) = !d(u - U,)) occurs when the available surface, 
i.e. that area which can be occupied by a new particle without resulting in an overlap 
with previously adsorbed particles, consists of isolated target areas each of which can 
be occupied by the centre of one and only one additional disk. For a polydisperse 
mixture we define a time f,, at which point there exist only isolated targets that can 
accommodate the centre of only one additional disk for all U. Of course many targets, 
perhaps the majority, do  not exist for the full range of U, but only for U close enough 
to the smallest diameter, U,. 

Each target is characterized by a length h which is a function of the diameter of 
the incoming particle. We assume that h, for U close enough to U,, is an analytic 
function of (U-u,) and that h ( h , ,  U )  = h ,  - A(u-ul) for h,  a A(u-u,) a 0  and is zero 
otherwise; h,  is the characteristic length of the target for an incoming particle of 
diameter U, and A is a constant > O  (figure 1). In one dimension, A is equal to 1; in 2 
or more dimensions, there exists a distribution of A’s related to the details of the target 

Figure 1. Illustration of a target area. The solid liner form the target for the centre of an 
incoming panicle of diameter U, (the smallest possible), while the dashed lines show the 
smaller target which is accessible to a panicle of diameter U (10,). 
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shapes, but all A's are >0 and it is sufficient, in order to determine the asymptotic 
behaviour, to consider a constant (mean) value A. The asymptotic kinetics are deter- 
mined by the rate at which the targets are occupied. If n(h,; f )  dh,  is the number of 
targets with a scale parameter between h, and h , + d h ,  at time I, then the total number 
of additional particles (per unit area) that will be adsorbed if the process is allowed 
to go to completion is 

H 

p ( m ) - p ( t ) =  d h ,  n ( h , ;  I )  (3  j 

where H ,  is an upper cutoff length. The probability that a target is occupied by a 
particle of diameter U is proportional to K(u)h(h , ,  U ) * .  Hence 

-lo .. " , 

-n(h,;  d t  d I ) = -  [[r:+h''A d u K ( o ) h ( h , ,  u)']n(h,; 1 )  (4) 

the solution of which is 

The leading term in the asymptotic regime is determined by the smallest targets. 
Therefore, n ( h , ;  1,) = n ( 0 :  t , )+O(h,)  with n(0;  I,) # 0. Usingthis result andsubstituting 
( 5 )  in (3) we have 

p(m) - p(  I )  - n(o; I,) d h ,  exp [ -: 1"' d a  K (u, ( 6 )  

where T = f - I,. We now consider two cases: 
(i) if K ( u , )  is different from zero then K ( u , + ( I - a ) h , / A ) = K ! ~ , ) + O ( h , ) .  

upper !imit of !he integr.! with infinitv i, which .. Anec nnt mndifv !he P,ep!acifig 
leading contribution, we find 

p ( m ) - p ( t ) -  I - ' / )  (7)  
(ii) If K(u,)=O and K" ' (o , )=  ...= K'""'(u,)=O, K("'(u,)>O, and K ' " ' ( u )  is 

continuous in the vicinity of U,, then we find 

p ( Z a ) - p ( t ) -  f - l"3+n) .  (8) 
Equations (7) and (8) are, then, the asymptotic power laws for the approach of 

the average density to its jamming limit value. 
The result (7) is certainly consistent with the hypothesis concerning the number of 

degrees of freedom-in this case two translational, plus one corresponding to the- 
continuous distribution of particle diameters. In d dimensions we predict an exponent 
of ,D = ! / ( d + ! ) .  A physical interpretation is less obvious for (8): although increasing 
n implies a greater degree of polydispersity around U,. Generalizing the above treat- 
ment, we anticipate p = l / (d  + 1 + n )  in d dimensions. 

We can also inquire about p,,(fj du, the number density of disks of diameter 
E [ U ,  u + d u [  at time I. For u ,z=o~u ,  where U, is an upper cutoff diameter smaller 
than u2, we have that 
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is the probability that a target characterized by h ,  is occupied by a disk of diameter 
~ [ u , u + d u [  and h ( h , , u ) = h , - A ( u + u , ) .  Insertingthesolutionforn(h,; ( )and  with 
the assumed behaviour of n ( h , ;  1,) and K ( u , )  (case (i) above) we find that 

where A ( u )  = K(ul)A2(u-u, ) ' .  It is important to emphasize that (1  I )  is valid only 
for U >  U,, iiie previous is),  shoii:d be iecoveia'i;e from 

p(m) - p ( l )  = d 4 p A p A m )  -pAf)). (12) 
.=I 

However, by substituting (11) in (12) one obtains an infinite coefficient for the f - ' / '  

term. One must he careful in taking the integration over U and the limit f + m  in the 
proper order. This can be achieved by starting from (9). Similarly it can also be shown 
that the surface coverage @ , ( I )  evolves as 

O(m) - @ ( f )  - 1: d u u 2 ( p , ( W ) - p Y ( f ) )  I-m - fC'/'. (13) 

An interesting structural characteristic of monodisperse RSA configurations in the 
asymptotic regime is the existence or a logarithmic divergence in the radial distribution 
function at contact, i.e. g ( r )  - -ln(r/u+ 1) [l, 18, 191. This behaviour, which is unique 
to the RSA process, results from the immobility of the adsorbed disks and the existence 
of targets in the asymptotic regime. We may describe the polydisperse RSA configuration 
with g(r; U, U'; f ) ,  the partial radial distribution function: pu'(f)g(r; U, U'; f )  dr  d u  du '  
is the density of particles with a diameter between U' and u '+du '  whose centre i s  at 
a distance between r and r + dr  irom the centre of a given particie with a diameter 
between U and u + d u ,  Less information is contained in the mean radial distribution 
function, g(r; f ) ,  the normalized pair correlation function for disk centres regardless 
of their diameters, which is defined as 

p(t)*g(r; 1 )  = 1: d u  du 'p , ( fbAf)g(* ;  U, U'; 1 ) .  (14) 

To determine the asymptotic behaviour of these functions it is necessary not only 
to assume that the target size scales as h = h , - A ( u - u , ) ,  but also that the target is 
formed by three surrounding particles. These triangular targets have been observed in 
computer simulations of monocomponent RSA configurations, and their existence in 
the polydisperse mixture seems reasonable, certainly if the range of particle diameters 
is narrow enough. Following the analysis deveioped for the monocomponent system 
[I], we find that g(r; U; U'; f )  can be written as the sum of two parts; a regular part 
which is certain to contain no diverging terms and a potentially diverging term. In 
particular, 

+ z ; u ; u ' ; f + m  - .I I I -  l +  - ,I 1 II + r r ~ \  +regular part. (15) 
I 

" I ,  

u+u' 
, ' " L , "  U , ,  I 

Using the property that g(r; U, U'; f ) = O  for r< (u+u ' ) /Z  and (14), one finds that 
for finite time 
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while in the infinite time limit one finds, with the help of (15), that 

g ( u I + E ; t + q  r-0' - E. (17) 

Thus no logarithmic divergence is found for the mean radial distribution function in 
the jamming limit. The results are independent of the dimensionality and the form of 
K ( u ) ,  i.e. whether case (i) or (ii) provided that K ( u )  is continuous inthe vicinity of U,. 

We thank P Schaaf for stimulating discussions. We thank Nato for travel grant 890872 
and the NSF for grant number CTS-9011240, 
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